Brain aromatase activity and plasma testosterone levels are elevated in aggressive male mice during early ontogeny.

نویسندگان

  • J C Compaan
  • J B Hutchison
  • A Wozniak
  • A J de Ruiter
  • J M Koolhaas
چکیده

Testosterone (T) and estradiol (E2) are involved in intraspecific aggressive behavior. Both steroids exert their effects on behaviour via the hypothalamus and the amygdala (Am) of the central nervous system (CNS). In these brain areas T is converted to E2, by the enzyme aromatase. Both the levels of brain aromatase activity (AA) and the effects of T and E2 on aggressive behavior in adulthood depend on steroidal organization of the CNS during ontogeny. In this study we measured plasma T and in vitro brain AA of males fetuses and neonates derived from two strains of wild house mice, which had been genetically selected for aggression, based upon attack latency. There were no differences in preoptic area (POA) AA levels between selection lines on either embryonic day (E) 17 or 18, or the day after birth (day 1). In the non-aggressive long attack latency (LAL) males the POA AA increases with age, i.e. was higher on E18 than on E17, which is correlated with brain weight (BrW). This was in contrast to aggressive short attack latency (SAL) fetuses, which only showed a slight, but not significant differences between embryonic days or a correlation with BrW. Neonatally, the POA AA of LAL males tended to decrease in contrast to SAL males. However, SAL neonates had a higher AA in the amygdala (Am) than LAL neonates, whereas no differences exist in the anterior hypothalamus. Thus, a differential brain AA distribution exists in SAL and LAL pups.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aromatase activity in the preoptic area differs between aggressive and nonaggressive male house mice.

Treatment with testosterone (T) or estradiol (E2) facilitates intraspecific aggressive behavior in adult rodents. Brain aromatization of T to E2 appears to be involved in facilitation of fighting behavior. In the present study we measure the in vitro brain aromatase activity (AA) in the preoptic area (POA), amygdaloid nuclei (Am), ventromedial hypothalamus (VMH), and parietal cortex (CTX) from ...

متن کامل

Dehydroepiandrosterone Heightens Aggression and Increases Androgen Receptor and Aromatase mRNA Expression in the Brain of a Male Songbird

Dehydroepiandrosterone (DHEA) is a testosterone/oestrogen precursor and known modulator of vertebrate aggression. Male song sparrows (Melospiza melodia morphna) show high aggression during breeding and nonbreeding life-history stages when circulating DHEA levels are high, and low aggression during molt when DHEA levels are low. We previously showed that androgen receptor and aromatase mRNA expr...

متن کامل

Testosterone and year-round territorial aggression in a tropical bird.

Testosterone (T) regulates avian behaviors such as song and aggression during the breeding season. However, the role of T in year-round territorial birds is still enigmatic, especially in tropical birds. Spotted antbirds (Hylophylax n. naevioides) defend territories in the Panamanian rainforest year-round but have low plasma T levels (0.1-0.2 ng/ml), except during brief periods of social challe...

متن کامل

Organizing Effects of Sex Steroids on Brain Aromatase Activity in Quail

Preoptic/hypothalamic aromatase activity (AA) is sexually differentiated in birds and mammals but the mechanisms controlling this sex difference remain unclear. We determined here (1) brain sites where AA is sexually differentiated and (2) whether this sex difference results from organizing effects of estrogens during ontogeny or activating effects of testosterone in adulthood. In the first exp...

متن کامل

Morphine and kisspeptin influences on 5-α reductase and aromatase gene expression in adult male rats

Objective(s): Kisspeptin and opioids are important factors for controlling GnRH/LH secretion. In present study, influences of kisspeptin or morphine were investigated on 5α- reductase or aromatase (CYP19) genes expression in the hypothalamus, testis and liver. It aimed to investigate whether kisspeptin pathway may control morphine effects on plasma concentration of tes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research. Developmental brain research

دوره 82 1-2  شماره 

صفحات  -

تاریخ انتشار 1994